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Abstract

Recent research in piecewise linear regression for Super-
Resolution has shown the positive impact of training re-
gressors with densely populated clusters whose datapoints
are tight in the Euclidean space. In this paper we further
research how to improve the locality condition during the
training of regressors and how to better select them dur-
ing testing time. We study the characteristics of the met-
rics best suited for the piecewise regression algorithms, in
which comparisons are usually made between normalized
vectors that lie on the unitary hypersphere. Even though
Euclidean distance has been widely used for this purpose,
it is suboptimal since it does not handle antipodal points
(i.e. diametrically opposite points) properly, as vectors with
same module and angle but opposite directions are, for lin-
ear regression purposes, identical. Therefore, we propose
the usage of antipodally invariant metrics and introduce the
Half Hypersphere Confinement (HHC), a fast alternative to
Multidimensional Scaling (MDS) that allows to map antipo-
dally invariant distances in the Euclidean space with very
little approximation error. By doing so, we enable the usage
of fast search structures based on Euclidean distances with-
out undermining their speed gains with complex distance
transformations. The performance of our method, which
we named HHC Regression (HHCR), applied to Super-
Resolution (SR) improves both in quality (PSNR) and it is
faster than any other state-of-the-art method. Additionally,
under an application-agnostic interpretation of our regres-
sion framework, we also test our algorithm for denoising
and depth upscaling with promising results.

1. Introduction

Super-Resolution (SR) techniques aim to recover a high-
resolution (HR) image from a low-resolution (LR) input im-
age. In order to achieve the desired HR image we must de-

−1 0 1

−1

0

1

B
A

C

Nearest Neighbors

Distant (~Ø)

(a) Euclidean metric
−1 0 1

−1

0

1

B
A

C

Nearest Neighbor

(b) Antipodally invariant metric

Figure 1: Behaviour of Euclidean distance and angular dis-
tance for points A, B and C. Although A and C have very
similar structures, Euclidean distance fails to group them
together.

termine the value of more variables than observations are
available, thus the problem is ill-posed. The common ap-
proach in the literature is to regularize the problem by the
addition of natural image priors: a great variety of them
have been presented across the years, yet there is an ongo-
ing shift towards learned priors.

The earlier priors based on more or less rigid models of
the imaging process (e.g. the bicubic smooth prior, the Iter-
ative Back Projection (IPB) of Irani and Peleg [12] ) have
been outperformed by priors which use learning or statis-
tical modeling to regularize the problem from training ex-
amples, usually at a patch level (e.g. the opening work of
Freeman et al. [8], the cross-scale self-similarity prior of
Glasner et al. [9] recently refined to extend the search do-
main via transformed patches [11], gradient priors such as
[19] or those using deep learning [6, 3]). An important and
prolific prior was that of sparsity, which was widely used
not only in SR [24], but also in many other image enhance-
ment problems [13, 7]. This approach assumed the decom-
position of a natural patch to be a sparse subset of entries
from a compact dictionary, and its main drawback is still



the computational cost of the L1 norm.
As a solution to the problematic of online sparse patch

decomposition, Timofte et al. [20] introduced a discrete set
of basis for which a neighbor embedding was calculated off-
line, thus avoiding an overhead during testing time. In ad-
dition to that, they proposed substituting norm L1 by L2

as a norm relaxation, obtaining very competitive results.
This SR method, named Anchored Neighborhood Regres-
sion (ANR) is composed by a set of anchored regressors
and the SR upscaling is done through a simple matrix mul-
tiplication. Briefly afterwards, an improvement for ANR
was presented supporting the usage of densely populated
neighborhoods (i.e. clusters) of samples very close in the
space, which respects better the L2 norm collaborative rep-
resentation nature [21, 15]. Within the family of regression
algorithms, several works introduced the usage of sublinear
search structures such as trees [23, 22], hashing [15] or even
ensemble of trees (i.e. forest) as the recent work of Schulter
et al. [18].

In this paper we follow-up on the direction of ANR, us-
ing an ensemble of piecewise linear regressors trained of-
fline, a regressor selection stage (done through a sublinear
search structure, as in [15]) and a matrix multiplication as
the only steps of the SR algorithm. In our algorithm, we in-
troduce distance metrics other than Euclidean distance (an-
gular metrics), under the motivation that Euclidean distance
fails to group antipodal points (i.e. diametrically opposite
points) as nearest neighbors. We also design a transfor-
mation in order to preserve the relative angular distances
in the Euclidean space and, therefore, enable the usage of
any sublinear search strategy. To conclude, we interpret
our framework as an application-agnostic regression which
adapts from a coarse first estimator and is able to address
other problems of the same nature (e.g. denoising). As to
performance, our proposed HHCR-SR method surpass the
most recent state-of-the-art by 0.2 to 0.3dB and it does it
about ×4− 11 times faster.

2. Proposed method
The proposed method is based on piecewise linear re-

gression, which we denote as HHCR and which builds on
the recent work of [21]. It consists in an ensemble of lin-
ear regressors anchored to certain centroids and performs
the regressor search through a Spherical Hashing (SpH) al-
gorithm, as the regression ensemble in [15]. We train and
select the regressors differently, as shown in the upcoming
sections, as well as introduce a mapping transformation of
both the centroids and the input observations in order to op-
timize the sublinear search performed by the SpH.

2.1. Piecewise Linear Regression

Regression analysis aims to estimate a certain transfor-
mation between observed variables which, in a broader

sense, models the relations between the manifolds in which
those variables are laying. A multivariate linear regression
is essentially a matrix multiplication:

x = R y, (1)

where y ε Rm is an input observation, x ε Rn the resulting
output and R ε Rn×m is the regressor. This operation re-
quires n(2m−1) operations, i.e. the complexity isO(nm).

The challenges present in low-level vision are usually too
complex to be addressed by a simple linear regression. The
under fitting commonly present in linear regression is di-
minished by a multiplicity of different linear regressors that
conform a piecewise linear regression system. The usage
of these ensembles is and has been common in many ap-
plications, sometimes under hierarchical structures such as
regression trees or regression forest (where a single linear
regressor is attached to each tree leaf).

In order to select the best regressor Ri (which has an
associated centroid ci) from within the ensemble {Rk} a
certain criteria δ(ci, y) needs to be defined, e.g. distance
metric, tree traversal. Different regressors are applied to the
input observations depending on this criteria:

x = Ri y, s.t. Ri = argmin
ci∈{ck}

δ(ci, y). (2)

Recently, some methods have applied this framework
and structure to the ill-posed challenge of Super-Resolution
(SR) imaging [23, 21, 20, 15], showing its great potential
and performance.

2.2. Metrics for linear regression

The linear regression scheme is, as we have seen, very
straightforward. One of the most fundamental aspects of the
system is how we choose the best-suited regressor, i.e. the
metric used to compare the input patch to the ith centroid.
This metric is not only important during testing time, but
also during training time to asses which observations are
used to train which regressor. It is recurrent in literature
the use of Euclidean distance for this purpose. If we are
aiming a nearest neighbor search for a regression system,
Euclidean space without any transformation is suboptimal
as it is not further exploiting the intrinsic characteristics of
linear regression.

The scalar matrix multiplication gives us some informa-
tion about the ambiguous variations that the metric we want
to define should ignore, i.e. for a given scalar λ we obtain
λx = R(yλ). The regressor R and the associated linear op-
erations are not changed by this scaling operation. There-
fore, performing a vector normalization is a good practice
as it solves partially the undesired variability derived from
scalar multiplication. Unitary vectors collapse all positive
scalar variations into a single unitary vector, thus holding
more training examples available for a certain vector type
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Figure 2: 2D example of our HHC compared to MDS. (a) Input points distributed on the unitary sphere (each point has
its own color label), circles/triangles denote positive/negative y-axis coordinate. (b) Points obtained with MDS and angular
distance. (c) Points obtained with our proposed fast transformation. To guide the reader there is a group of antipodally
invariant nearest neighbors highlighted in a box across the three figures. Note how both MDS and our proposed transformed
put close together antipodal nearest neighbors as opposed to the input data, which were located at maximum distance.

and being able to use them efficiently. During testing time,
although the regression must be done with the original non-
normalized vector y, the search should be done with the
normalized version ŷ = y

‖y‖ for the same principles.
However, there are still certain cases which are not prop-

erly managed by just a normalization, as the norms are
strictly positive, i.e. ‖y‖ ε R+, and therefore can not com-
pensate for all those scalar values λ ε R−. In a unitary
sphere composed by normalized vectors, the case of a neg-
ative λ represents its antipode (i.e. the point that is diamet-
rically opposed in the unitary sphere).

The antipode of a point is one of the two closest possi-
ble nearest neighbor, however in the Euclidean space they
are the most far away possible points (i.e. at a diameter dis-
tance) as it can be appreciated in Fig. 1. A good metric for
regression should be therefore antipodally invariant.

We propose a metric based on the cosine similarity (CS)
as a native antipodally invariant similarity metric which is
well adapted for regressors’ nearest neighbor search:

ς(c, y) = |ĉ · ŷ| = |cos θ| , (3)

whose output is bounded in the [0, 1] range (1 denotes max-
imum similarity) and measures the absolute value of the co-
sine of the angle θ between the two vectors c and y. The
equivalent distance metric, which we denote as angular dis-
tance reads:

δθ(c, y) =
2

Π
arccos(ς(c, y)) (4)

and is normalized to be in the range [0, 1] range (1 denotes
maximum distance).

When there is no time nor metric space constrains (e.g.
during training), using the similarity calculation of Eq. (3)
is the best option. However, during testing time if a bi-
nary split is used, and this split is making use of Euclidean

space (such as the one used in [23, 15]), the adaptation is not
straightforward. Rather than trying to design a split-specific
metric, as in the contemporary antipodally invariant naive
Bayes forest SR [17], we study the embedding of our data-
points in the Euclidean space in such a way that antipodally
invariant distances (i.e. Eq. (4)) are preserved.

2.3. Embedding in the Euclidean Space

Multidimensional scaling (MDS) is a well known statis-
tical method that transforms an l × l matrix D containing
pairwise distances between all l observations into a set of
coordinates such that the Euclidean distances derived from
them preserve the relative distances specified in D. MDS
is widely applied as a metric-preserving dimensionality re-
duction method, as the dimension of the output coordinates
is user specified [16].

Although MDS can map appropriately antipodally in-
variant distances into Euclidean space, it is unusable as not
only the optimization process is computationally intense
when the number of points is very large ( its complexity
is O(ml2), where m is the dimensionality), but addition-
ally the input matrix D requires performing an exhaustive
search point-to-point for all l elements. The Landmark
MDS (LMDS) of Silva and Tenenbaum [5] introduced a
more efficient transformation based on an approximate an-
chored MDS.

Silva and Tenenbaum propose to divide the algorithm in
two steps: a first step in which a classical MDS is performed
with a smaller set of points, i.e. landmark points ls � l, and
a second step that applies a distance-based triangulation in
order to obtain the embedding of the complete l elements.
The first step can be done beforehand in a training stage, se-
lecting an optimal set of landmark points, whose minimum
size is m + 1 landmarks for a m-dimensional embedding.
The embedding vectors for each of the points can be ob-
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Figure 3: Super-Resolution upscaling PSNR vs dictionary
size for different metrics and coarse approximations. All
the configurations use exhaustive search.

tained as:

qa = −1

2
L#
m(da − dµ), (5)

where da is a vector with the squared distances from point
a to all the landmarks, dµ is a vector with the mean square
distances from the i-th landmark to all the landmarks (it is
obtained in step 1) and L#

m is the pseudoinverse transpose
of Lm (it is obtained in step 1, we refer the reader to [5] for
further details). LMDS only requires calculating the dis-
tances for ls× l. Nevertheless, although substantially faster
than the original MDS, LMDS is still causing a big impact
in the processing time in algorithms which have an empha-
sis in low complexity, such as it is our proposed work.

As a fast alternative to the MDS family of algorithms we
propose a simple deterministic transformation designed to
mimic the MDS behavior when it is used with angular dis-
tances. Fig. 2 (a) and (b) show the coordinates obtained with
MDS with a D matrix constructed with angular distances.
If we analyze the transformation in the y-axis, the MDS
transformation stretches the positive half-space points to oc-
cupy the whole sphere, and it maps likewise the negative
half space. The resulting mapping contains both original
half-spaces mixed in such a way that the angular distances
are preserved. The intuition behind our transformation is to
make use of the inverse projection (λ = −1, which is neu-
tral for the regressor search) to compress all the data in the
positive half space rather than stretching both half-spaces,
as it can be seen in Fig. 2 (c).

Several conditions need to be met for our proposed trans-
formation to be effective. It takes advantage of the charac-
teristics of normalized features (i.e. observations in the uni-
tary sphere Sm−1). It also requires them to be distributed in
both positive and negative half-spaces in a balanced way at
least in one dimension.

The desired function must map two (antipodal) points in
Sm−1 into a single point. In order to do that, we enforce a

forbidden space region, corresponding to the negative half-
space of the qth dimension, i.e. the observations must be
y · eq ∈ R+, where eq is the qth standard basis in the Eu-
clidean m space:

yTR = −y, if y · eq < 0. (6)

In our training (around 500K feature vectors), all the
dimensions were highly and similarly balanced, so any of
them could be chosen. Whenever this is not the case, the
most balanced dimension should be selected to create the
hyperplane.

The outcome is a Half Hypersphere Confinement (HHC)
instead of the initial unitary hypersphere, where the Eu-
clidean distances respect also the angular distances.

The proposed HHC is created from an hyperplane y ·
eq = 0 which is the bound of the confinement. The perfor-
mance of our proposed HHC transform depends on the dis-
tance to this hyperplane, as points which are very close to
the hyperplane loose connection to the points immediately
below the hyperplane, which are projected to the upper half
hypersphere. As shown in Fig. 2, MDS has a continuous
distribution of points while our proposed transform is trun-
cated in the y · eq = 0 hyperplane. However, in Fig. 5
we quantify the low incidence of this behavior by measur-
ing a similarity ratio η = ζHHC/ζ vs the distance to the
hyperplane and observing its frequency. Although there is
indeed a certain degradation for small distances to the hy-
perplane, the frequency is very low and most of the similar-
ities obtained with HHC are highly reliable (99.2% of the
total amount of points have a similarity ratio higher than
0.85).

Similarly to the work of [15], we place a Spherical Hash-
ing search split [10] on top of our piecewise linear re-
gression using the HHC to embed our points in the Eu-
clidean space. Spherical hashing differs from previous ap-
proaches by using hyperspheres to define hashing func-
tions on behalf of hyperplanes. A given hashing function
H(y) = (h1(yF ), . . . , hs(y)) maps points from Rm to a
base 2 Ns, i.e. {0, 1}s. Every hashing function hk(y) indi-
cates whether the point y is inside kth hypersphere, modeled
for this purpose as a pivot pk ∈ Rm and a distance threshold
(i.e. radius of the hypersphere) tk ∈ R+ as:

hk(yF ) =

{
0 when δ(pk, y) > tk

1 when δ(pk, y) ≤ tk
. (7)

In Fig. 3 we show first the superiority of the antipodal
invariant metric CS with respect to Euclidean distance in a
regression-based SR application, thanks to a system where
regressors are trained with closer and denser neighborhoods
and the selection of regressors in testing time is improved.
Additionally, we show the good performance of HHC for
SR upscaling, which approximates closely the performance
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different metrics.

obtained with CS, specially from 128 atoms on. Note that
in [15], when placing a sublinear search structure based on
the Euclidean distance they introduced a substantial quality
drop with respect to exhaustive search. Differently, in our
proposed scheme of SpH together with our proposed HHC,
the drop in quality is very reduced or even nonexistent (see
Table 1).

2.4. Training

The training of regressors is performed from certain cen-
troids obtained through any unsupervised clustering tech-
nique, such as spherical k-means [14] or K-SVD [25], in
order to obtain a set of k centroids {ck}. As the previous
original work of Zeyde et al. and Timofte et al. [25, 20], we
also found in K-SVD a good match for this first clustering
stage. It is important to note that K-SVD is well adapted to
work with antipodal points, so it fits the scope of this pa-
per. From this moment on, we build each cluster C through
a NN search against a large pool of training samples {y}
from which we know the ground truth {x}. As we are not
time constrained, we use angular distance for our search. As
it can be seen in Fig. 4, clusters created with both angular
distance and HHC obtain smaller distances than Euclidean
clusters, which is optimal for the regressors training [15, 21]
as either the observations are closer to the centroid at a given
cluster size, or for a given maximum distance there are more
available training samples.

3. Applications
The regression scheme presented in this paper is based

on the original SR work of ANR from Timofte et al. [20].
Although not explicitly stated in the paper, they divide their
output x into two separate components, i.e. x = x̃ + xR,
which divides the signal into two components: those ob-
tained through regression xR and the less challenging ones
x̃, that are obtained otherwise. The strategy is to carry out
the estimation x̃ with a low-complexity well-known estima-
tor, e.g. bicubic for SR applications, X̃ = est(Y ). The
resulting regression scheme reads:

x = x̃+Ry. (8)

Figure 5: Histogram of the similarity ratio vs distance to
the folding hyperplane. We evaluate the well-functioning
of our proposed transformation by searching the 1-st near-
est neighbor from 10k points to 1024 centroids (i.e. the test-
ing case of our regression ensemble). We first obtain the
NN both with cosine similarity (i.e. best solution) and with
our proposed transformation of the Euclidean space (i.e. ap-
proximation). We recalculate the cosine similarity for both
NN and compute the ratio η = ζHHC/ζ (when η ≈ 1 the
approximation is very close to the best solution).

This strategy present several advantages: The regression
performance improves when it starts from a better approxi-
mation, so the better the estimator used, the better the final
result. Secondly, the subtraction xR = x− x̃ has zero mean
value and thirdly, this scheme makes the regression ensem-
ble application-agnostic. By only changing this coarse esti-
mation the regression framework adapts to the new charac-
teristics of the application. In this paper we show the per-
formance of our algorithm for Super-Resolution (not only
luminance but also depth images) and Denoising.

3.1. Super-Resolution

Super-Resolution results can be obtained by using a sim-
ple upscaler to estimate X̃ , e.g. bicubic. Several research
has dealt with similar regression frameworks, demonstrat-
ing that piecewise linear regression is very well suited to
minimize the blur and aliasing artifacts introduced by other
simple upscalers. In our testing we validate that antipo-
dally invariant metrics, performed through our HHCR in
the Euclidean space, widely outperforms the state-of-the-
art SR methods. We also introduce an additional improve-
ment by extracting gradient features over an upscaled image
X̃ obtained by a simplified Iterative Back Projection (IBP)
[12] algorithm rather than the usual bicubic. In Fig. 3 we
show the difference between bicubic and IBP-based gradi-



Figure 6: Visual qualitative assessment for several applications and datasets. The butterfly image (Set5) and the market
depth image (Market) are upscaled with a ×2 magnification factor. From left to right and top to bottom: Original, bicubic
interpolation, ANR [20], ASRF [18], A+ [20] and HHCR with 7 hyperspheres. The last two groups of images (boat and
motorbikes) show denoising in the kodak dataset, from left to right: Original, Noisy, NLM, NLM + HHCR (first row σ =
0.05, second row σ = 0.15). Better viewed zoomed in.
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most recent state-of-the-art methods. All algorithms run
Set14 with a ×2 upscaling factor, see Table 1 for more in-
formation.

ent features in terms of PSNR for a ×2 upscaling factor
(around 0.06dB). Note that this improvements diminishes
with higher magnification factors.

The methods included in our testing setup are: bicubic as
a baseline, the recently proposed Deep Learning approach
of Dong et al. [6] (referred as SRCNN), the ANR method of
Timofte et al. [20] and its improved version A+ [21] and the
novel Super-Resolution forest of [18] (referred as ASRF).
The datasets and the whole experimental setup is based on
the one used in [23, 24, 6, 15], with the addition of the kodak
dataset and the ×2 magnification factor.

In order to further test the versatility of our proposed up-
scaler, we also test it with (clean) depth images, without
re-training the regressors with depth content. We use two
sequences of 15 images each from the Sintel synthetic depth
dataset [2], which we denote as bambo and market.

Our proposed HHCR has a parallel implementation, and
runs in the same CPU as the other methods. We use a K-
SVD sparse dictionary of 8192 elements and the chosen
cluster size is 4250 k-NN. A+ uses a dictionary of 1024
atoms and a neighborhood size of 2048 atoms, as setting
it to 4250 degraded their quality results. In our algorithm
the time complexity is affected by the number of hyper-
spheres used in the SpH configuration rather than the size
of the dictionary, therefore we increase its size as our per-
formance scales better than that of A+ both in quality and
speed when enlarging the dictionaries. The ASRF forest
is trained with the improved alternative training they pro-
posed, with 15 trees and a depth of 16 levels (65536 leaves).

We present two configurations of our algorithm: 1 hyper-
sphere (i.e. exhaustive search) which sets an upper quality
limit and 7 hyperspheres which is our optimal configuration
in terms of quality vs speed trade-off. By showing both
configurations we evaluate the effect of the approximate
search both in quality drop and in time speed-up, showing at

Noisy NLM[1] NLM+HHCR BM3D[4] BM3D+HHCR

σ PSNR PSNR Time PSNR Time PSNR Time PSNR Time

K
od

ak

0.05 26.03 29.98 0.204 31.59 0.932 33.64 6.400 33.70 8.994

0.10 20.11 27.19 0.199 28.70 0.955 30.47 6.496 30.53 9.303

0.15 16.75 25.85 0.204 26.93 0.989 28.75 6.421 28.80 9.472

0.20 14.50 24.87 0.209 25.55 1.000 27.63 7.573 27.68 9.365

Se
t5

0.05 26.08 31.80 0.064 31.21 0.303 34.39 1.623 34.52 2.475

0.10 20.26 28.52 0.065 30.23 0.304 31.24 1.659 31.40 2.498

0.15 16.97 26.65 0.068 28.11 0.292 29.27 1.650 29.43 2.499

0.20 14.76 25.12 0.059 26.09 0.300 28.00 2.002 28.15 2.884

Table 3: Performance of image denoising for different lev-
els of additive Gaussian noise in terms of averaged PSNR
(dB) and averaged execution time (s) on the kodak and Set5
datasets. Best results in bold.

the same time the full potential of the antipodally invariant
search and the IBP features.

We show objective evaluation of all the tested methods in
Table 1. First of all, the quality obtained with our HHCR is
around 0.2dB higher than that of A+ and ASRF, which often
are the second best performers. The speed-up with respect
A+ ranges from ×4.6 to 9.3 and about ×10 with respect
ASRF. Secondly, the algorithmic speed up by using SpH in
the HHC transformed space (i.e. comparison between s = 1
and s = 7) ranges from ×4.8 to 11 depending on the up-
scaling factors. The drop in quality is very reduced and
ranges from 0.01 to 0.07dB. With s = 7 we clearly outper-
form all the state-of-the-art methods in both running time
(with the exception of bicubic) and quality (PSNR). A vi-
sual overview of speed vs quality is shown in Fig. 7.

When it comes to depth images, the improvement mar-
gins are even broader, as shown in Table 2, where specially
for ×2 magnification factor there are improvements up to
0.5dB compared to A+. In Fig. 6 we show some images and
zoomed-in crops for subjective evaluation, e.g. the high-
lighted upper white stripes of the butterfly image, where our
proposed algorithm reconstruct sharper and thinner edges,
obtaining overall better preserved structures.

3.2. Denoising

We also apply our piecewise linear regressor for denois-
ing images corrupted with Gaussian noise of diverse stan-
dard deviations σ. As already introduced, we select a first
coarse denoising algorithm and let the system learn how
to correct the output. We show how the regression stage
improves greatly over a very basic estimator, i.e. non-local
means (NLM) [1], but also how with a more sophisticated
first approximation, i.e. BM3D [4], the regression stages is
still able to improve the outcome. We do not aim to obtain
state-of-the-art results, but rather demonstrate how our algo-
rithm adapts to different problems with barely any change



Bicubic ANR [20] SRCNN[6] ASRF [18] A+ [21] HHCR, s = 1 HHCR, s = 7

MF PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Set5

2 33.66 0.002 35.83 0.712 36.34 3.953 36.69 1.264 36.55 0.761 36.87 1.167 36.80 0.105

3 30.39 0.002 31.92 0.449 32.39 3.916 32.57 1.050 32.59 0.467 32.79 0.583 32.75 0.080

4 28.42 0.002 29.69 0.348 30.09 4.031 30.20 1.059 30.29 0.346 30.46 0.382 30.45 0.075

Set14

2 30.23 0.002 31.80 1.717 32.18 7.695 32.36 2.114 32.28 1.739 32.48 2.223 32.44 0.205

3 27.54 0.002 28.65 0.933 29.00 7.646 29.12 1.670 29.13 0.963 29.26 1.075 29.23 0.153

4 26.00 0.002 26.85 0.696 27.20 7.944 27.31 1.371 27.32 0.714 27.45 0.716 27.42 0.155

Kodak

2 30.85 0.003 32.24 2.938 32.63 13.121 32.76 3.360 32.71 3.161 32.89 3.943 32.84 0.339

3 28.43 0.003 29.21 1.615 29.43 12.805 29.63 2.555 29.57 1.678 29.68 1.771 29.65 0.246

4 27.23 0.003 27.80 1.199 27.94 13.315 28.17 2.204 28.10 1.226 28.17 1.186 28.15 0.245

Table 1: Performance of ×2, ×3 and ×4 magnification in terms of averaged PSNR (dB) and averaged execution time (s) on
datasets Set5, Set14 and Kodak. Best results in bold.

Bicubic ANR [20] SRCNN[6] ASRF [18] A+ [21] HHCR, s = 1 HHCR, s = 7

MF PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time PSNR Time

Bambo

2 31.60 0.003 33.06 3.373 33.84 15.135 34.56 3.608 34.31 3.640 34.77 4.259 34.71 0.382

3 29.63 0.003 30.72 1.768 31.26 14.921 31.69 2.623 31.85 1.866 32.05 2.226 32.00 0.278

4 28.40 0.003 29.33 1.292 29.75 15.285 30.13 2.221 30.25 1.331 30.40 1.392 30.38 0.267

Market

2 35.83 0.003 37.46 3.279 38.61 15.053 39.44 3.294 39.04 3.579 39.59 4.387 39.53 0.351

3 33.82 0.003 35.11 1.889 35.92 14.643 36.58 2.540 36.73 1.990 36.95 1.998 36.91 0.274

4 32.51 0.003 33.62 1.300 34.16 15.661 34.86 2.124 35.00 1.364 35.21 1.283 35.18 0.270

Table 2: Performance of ×2, ×3 and ×4 magnification in terms of averaged PSNR (dB) and averaged execution time (s) on
depth datasets Bambo and Market. Best results in bold.

in its structure.
The features used for the algorithm are straightforward:

we use directly the pixel values of patches extracted from
the estimator (NLM or BM3D) concatenated with the noisy
input patches. We would like to remark that we have not
tuned or made further research about the optimality of this
feature for the denoising problem, yet the results obtained
are promising as to test with features which fit better the
denoising problem and benefit from certain synergy with
the selected estimator.

The results shown in Table 3 are specially interesting
when configured to work with NLM as estimator. The
improvement by our regression stage is regularly higher
than 1dB, and although the overall PSNR is still lower than
more complex approaches as BM3D, it still shows how our
method can adapt and respond well for different problems.
When applying it to the BM3D, the improvement is upper-
bounded around 0.15dB and probably further optimization
on the features and characteristics of BM3D output should
be taken into account to push the performance forward.

4. Conclusions
In this paper we extend the original framework of Tim-

ofte et al. on anchored neighborhood regression [20] and
further improve the SpH search stage of Pérez-Pellitero

et al. [15]. We analyze the optimality of the metrics in-
volved in piecewise linear regression NN searches, conclud-
ing that antipodal invariance has a great impact on the per-
formance of the regression strategy. We introduce the angu-
lar metric space as a naturally antipodally invariant solution,
but we also present the simple yet effective transformation
HHC which preserves antipodal invariance in the Euclidean
space. Our proposed transform confines the input points
in a half hypersphere obtaining a reliable and inexpensive
approximation of a more complex non-linear mapping, as
could be MDS. Training regressors and selecting them dur-
ing testing with antipodal invariant metrics improves neatly
the quality performance, and by using our HHC together
with SpH, the drop in quality for the approximate search
compared to exhaustive search is minimal. We perform sev-
eral Super-Resolution upscaling tests which widely surpass
the most recent state-of-the-art by about 0.2dB in luminance
and depth images, while being ×9 faster. We also provide
a simple and straightforward configuration to use our pro-
posed framework for denoising images, demonstrating the
versatility of the presented work.
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