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Abstract

This work presents Interactive Conversational 3D Virtual Human (ICo3D), a method for generating
an interactive, conversational, and photorealistic 3D human avatar. Based on multi-view captures of
a subject, we create an animatable 3D face model and a dynamic 3D body model, both rendered
by splatting Gaussian primitives. Once merged together, they represent a lifelike virtual human
avatar suitable for real-time user interactions. We equip our avatar with an LLM for conversational
ability. During conversation, the audio speech of the avatar is used as a driving signal to animate the
face model, enabling precise synchronization. We describe improvements to our dynamic Gaussian
models that enhance photorealism: SWinGS++ for body reconstruction and HeadGaS++ for face
reconstruction, and provide as well a solution to merge the separate face and body models without
artifacts. We also present a demo of the complete system, showcasing several use cases of real-time
conversation with the 3D avatar. Our approach offers a fully integrated virtual avatar experience,
supporting both oral and written form interactions in immersive environments. ICo3D is applicable to
a wide range of fields, including gaming, virtual assistance, and personalized education, among others.
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1 Introduction

The development of interactive 3D virtual humans
has gained significant traction in recent years,
driven by advancements in artificial intelligence,
computer vision, and real-time rendering tech-
nologies. These digital avatars are becoming inte-
gral to a wide range of applications, including
gaming, entertainment, education, healthcare, and
customer service. By enabling realistic, dynamic
interactions between users and virtual characters,
3D virtual human avatars have the potential to
redefine the way users experience virtual or aug-
mented environments. Capturing, reconstructing,

and reanimating an interactive virtual avatar that
moves and behaves like a real human is a complex
problem composed of a multiplicity of intercon-
nected tasks, such as face reconstruction, speech
and expression reanimation, body reconstruction
and pose control, natural language understanding
and generation. Prior art has generally focused on
solving each of these problems individually, and
often independently, in part as capturing multi-
view sequences of body and head requires different
hardware arrangements in terms of space, cameras
and illumination.

Arguably, the face is the most attention-
attracting element of a 3D virtual human avatar.
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Fig. 1 Our method generates a photorealistic 3D full-
body virtual avatar from posed multi-view images, with
dynamic facial expressions driven by input audio and cor-
responding procedural body animation. A LLM enables the
user to converse with the avatar in real-time. We refer the
reader to our suppl. video to see our method in action.

A number of recent works [1–4] have obtained
impressive results in photorealistic reconstruc-
tion of heads and faces, with increasingly faster
rendering times using both monocular or multi-
view input videos. Often, they retain a control
interface for new expressions via parametric 3D
Morphable Models (3DMM), such as FLAME [5]
and ARKit [6]. Despite their success, these works
are generally disconnected from the full body,
sometimes even lacking neck articulation. Addi-
tionally, the expression reanimation often relies on
pre-recorded face tracking or manually edited 3D
blendshapes, making them not easily generative.

In this work, we build upon our previous work
on head [7] and dynamic [8] 3D body reconstruc-
tion. We introduce technical improvements over
both methods, and build a full-bodied conversa-
tional avatar that runs in real time.

Our contributions are: (1) we extend our
head model HeadGaS to enable audio-driven
head reanimation (Sec. 3.3), and (2) propose a
novel intra-window spatio-temporal encoder that
enhances temporal consistency and accuracy of
our dynamic body model SWinGS (Sec. 5.1).
(3) We then integrate both head and body recon-
struction to produce a complete avatar (Sec. 3.5),
and (4) introduce a Large Language Model (LLM)
that provides interactive conversational capabili-
ties (Sec. 3.7). Given the text response from the
LLM, a Text-to-Speech (TTS) model generates
speech audio that drives our head model, enabling
realistic synchronized facial animations. Thanks

to the inherent efficiency of 3D Gaussian Splat-
ting at inference time, we can render the avatar in
our real-time viewer, allowing users to chat with it
while wearing a VR headset or watching a screen.

The remainder of this paper is organized as
follows: In Sec. 2, we review related work in
dynamic 3D human reconstruction, head recon-
struction and animation, and Natural Language
Processing (NLP). In Sec. 3, we describe the build-
ing blocks of our conversational virtual human,
followed by Sec. 4 with further implementation
details, specially relating to our real-time viewer.
We present quantitative and qualitative results of
our algorithms and system in Sec. 5. We discuss
current limiation in Sec. 6 and conclude the paper
in Sec. 7.

2 Related Work

2.1 Neural Rendering of Dynamic
Human Bodies

Recent advancements in neural rendering have sig-
nificantly improved the fidelity, photorealism, and
efficiency of 3D human avatars compared to com-
monly used textured meshes. Pioneering works in
human body modelling use statistical mesh tem-
plates such as SMPL [9, 10], which are convenient
to use but lack flexibility to represent the exact
body shape and appearance of a person, and thus
are often used as building blocks of more advanced
methods.

Since then, another important breakthrough
has been the seminal work of Neural Radiance
Fields (NeRF) [11] that enabled photorealistic
rendering of static scenes via volume rendering.
The computationally intensive first version has
quickly been improved enabling real-time render-
ing by storing spatially distributed features [12,
13]. NeRF has also been extended to dynamic
scenes by modeling the time dimension [14–16].
These dynamic radiance fields can be used to train
and render volumetric representation of humans
in motion [17, 18]. Alternatively, one can also use
implicit surface representations [19, 20] to render
a 3D human [21, 22].

Recently, 3D Gaussian Splatting (3DGS) [23]
made significant strides by modeling scenes
with 3D Gaussian primitives, which, when com-
bined with tile-based differentiable rasterization,
achieves very fast rendering while maintaining
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high-quality reconstruction. Luiten et al. [24]
extended this to dynamic scenes with tracked
3D Gaussian trajectories. Recent methods extend
3DGS to general dynamic scenes including [25–
30] among others. Other works have focused
specifically on adapting 3DGS to dynamic human
reconstruction, including [31–39].

Regardless of the representation (e.g.mesh,
NeRF, SDF, 3D Gaussians), one important design
choice (explored in Sec. 5.1.2) is the driving sig-
nal for the body motion: learning time-dependent
motion leads to 4D models that can replay the
training videos [8, 17, 18], while using 3D body
pose as input enables the creation of animat-
able body models [31–33, 35, 40] deformed with
skinning algorithms [41, 42].

Our method specifically extends upon our
prior work SWinGS [8] for multi-view 4D recon-
struction. By incorporating recent advancements,
we enable real-time and higher-fidelity full-body
3D reconstructions, providing a comprehensive
solution for our interactive virtual human avatar.

2.2 Head Reconstruction and Facial
Animation

Head reconstruction from a set of image obser-
vations has been a very active field in recent
years. Approaches include models that general-
ize across subjects [43–45] or rely on multi-view
head captures [46–49], which can have a static or
dynamic form. The task of generating animatable
facial models from images has progressed signif-
icantly, with recent works enabling high-fidelity
facial reenactments and dynamic expressions.
Deep Video Portraits [50] and Face2Face [51]
enable real-time facial reenactment with high real-
ism but rely on constrained source data, such as a
frontal single-view image and limited expressions.
Voice2Face [52] employs audio signals for facial
animation, but the expressions and conversational
integration are limited.

NeRF- and mesh-based approaches have also
been developed for dynamic head modeling.
NeRF-based methods such as Neural Head
Avatars [53] and Semantic Facial NeRFs [54]
reconstruct personalized radiance fields from
monocular videos, capturing detailed geometry
and appearance within a volumetric representa-
tion. Mesh-based techniques like Realistic One-
shot Mesh-based Avatars [55] enable high-fidelity

geometry and texture reconstruction from min-
imal input, supporting expressive and identity-
preserving reenactment. Hybrid representations,
such as the Mixture of Volumetric Primitives [49],
combine structured primitives with neural render-
ing to balance visual realism and computational
efficiency.

It is worth noting that most head reconstruc-
tion and facial animation models focus primar-
ily on incomplete captures of the human body,
i.e. with a field-of-view framing the head gener-
ally from the shoulders up (see Fig. 12 left). This
achieves effectively higher resolution for the head
and face regions, and the required capture sys-
tems (e.g. lightstage domes, multi-view camera
rigs) are more accesible than their full-body equiv-
alents. Designing full-body avatars that retain the
same fidelity and control for the face is challeng-
ing, both from the data side, but also from the
system design. Beyond the animatable body mod-
els discussed in Sec. 2.1, there are some notable
examples in the prior art of methodologies achiev-
ing full-bodied avatars that have some degree of
face expression control. The foundational work of
Pavlakos et al. [10] SMPL-X is an extension of
SMPL [9] that incorporates hands and head para-
metric control. More recently, ExAvatar [56] intro-
duces 3D Gaussians in the surface of the SMPL-X
mesh topology and thus inherits the same head
control capabilities. Despite these works pioneer-
ing control over the face in full-body avatars,
arguably this is fairly limited in terms of expres-
siveness, and can not reproduce nuances necessary
for e.g. accurate speech, emotion. Concurrent to
our work, TaoAvatar [57] proposes SMPLX++, an
extension towards clothed avatars, and improves
face expressiveness via learnable blend shapes for
each Gaussian primitive.

Further recent 3D Gaussian Splatting-
based approaches to facial animation modelling
include [1, 2, 4, 58]. Our method extends our prior
work HeadGaS [7] by integrating audio-driven
facial animation with generative, LLM-based con-
versational capabilities. This enables our avatars
to reason and generate language, and to exhibit
contextually appropriate facial expressions and
respond to user inputs with realistic movements
in real time.
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2.3 Natural Language Processing
and Conversational Agents

Language is central to the way humans acquire,
organize and communicate knowledge. Language
modelling has been a long-standing field that
aims to provide computational models that can
understand and generate diverse human language
[59, 60]. Language Models (LMs), such as the
ubiquitous n-gram model [61], generally predict
the likelihood of word sequences based on the
surrounding context. Recently, Large Language
Models (LLMs) have shown impressive perfor-
mance in text understanding and generation. The
term LLM refers to a family of models with
a very large parameter count, which have been
trained on an immense corpus of data, i.e. at
web-scale. Notable examples of LLMs such as
GPT-3 [62], InstructGPT [63], and GPT-4, [64]
rely on the Transformer architecture [65], which,
thanks to the self-attention mechanism, can flexi-
bly capture context and long-range dependencies.
In part due to their scale advantage, LLMs present
strong generalization and unprecedented natural-
ness across different tasks and domains, specially
those related to conversational capabilities, e.g.
natural language understanding, reasoning, and
generation. We refer the reader to Yupen et al. [66]
for a more exhaustive literature review on LLMs.

In this work, we leverage publicly available
LLMs to provide advanced conversational capa-
bilities to our 3D human reconstruction, which
effectively provides a 3D embodiment of the
LLM. Qwen [67] provides an open-source LLM
series consisting of various versions (1.5, 2, 2.5)
and number of parameters (ranging from 0.5B
to 110B) [68]. In our pipeline, we deployed
Qwen2 which supports multiple languages, includ-
ing English and Chinese, and whose model weights
are available on Hugging Face and ModelScope.

3 Method

3.1 System Overview

Our complete system for building a full-body
animatable and interactive 3D virtual avatar inte-
grates separate reconstruction methods for head
and body modeling, along with LLM integration
for driving real-time facial animation. We divide

the reconstruction process into three main com-
ponents: the audio-driven animatable head model
(Sec. 3.3), the dynamic body model (Sec. 3.4),
and head-body integration (Sec. 3.5). The head
model is first trained separately to obtain high-
quality renderings and to learn person-specific
facial expressions from the data. It is then fused
with the body model during the integration pro-
cess to generate the complete avatar. Each recon-
struction method is built upon the 3D Gaussian
Splatting framework.

3.2 3D Gaussian Splatting

The original 3D Gaussian Splatting (3DGS)
method [23] models a static scene using a set of 3D
Gaussians. Given a set of images and associated
camera poses, 3DGS initializes its representa-
tion with a sparse point cloud, typically gener-
ated using the COLMAP structure-from-motion
pipeline [69]. Each 3D Gaussian is represented
by its center µ ∈ R3, covariance matrix Σ ∈
R3×3, opacity o ∈ R, and color c ∈ R3(k+1)2 ,
where k denotes the degree of spherical harmonics
used to model the color, capturing view-dependent
appearance. The Gaussians are placed in world
coordinates and evaluated at a point x using the
following equation:

G(x) = e−
1
2x

TΣ−1x. (1)

The covariance matrix Σ is computed as Σ =
RSSTRT , where S and R are the scaling and
rotation matrices, respectively. To represent the
scene, 3DGS optimizes the parameters of the 3D
Gaussians using differentiable rasterization and
Gaussian Adaptive Density Control (ADC). The
loss function used for training is defined as:

L = (1− λ)L1(Ir, Igt) + λLSSIM(Ir, Igt), (2)

where Ir and Igt denote the rendered image
and ground-truth image, respectively. This frame-
work is highly effective for static scenes but
lacks the ability to handle dynamics, such as the
nuanced facial expressions and body movements
of our avatar, which we address in the subsequent
sections.
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Fig. 2 Overview of our conversational human pipeline ICo3D. Users interact with the avatar via text or audio
queries, which are processed by a LLM to produce a textual answer, then converted to audio. The audio speech is the
driving signal for the audio-driven head model HeadGaS++ (Fig. 3). It also serves to determine the body dynamics through
procedural body animation. 3D Gaussians are generated at each timestep by both the head and the body model SWinGS++
(Fig. 4), which are then integrated and rendered from novel views, producing a free viewpoint video stream synchronized
with the audio speech.

3.3 HeadGaS++: Audio-driven 3D
Head Model

In this section, we describe our method
HeadGaS++, our approach to generating high-
fidelity, audio-driven 3D head models from
multi-view video sequences and speech inputs.
The goal is to synthesize novel views and expres-
sions of the avatar’s face given a novel audio
feature vector and camera pose as input. An
overview of our method is shown in Fig. 3. The
method is an extension of our prior work on ani-
matable head modelling HeadGaS [7], but with
enhanced audio-driven capabilities and higher
fidelity reconstructions (see Table 2).

As in HeadGaS, HeadGaS++ extends the
static 3DGS framework to create animatable
avatars by introducing audio-dependent Gaussian
properties. We enable each Gaussian to change
its color ci and opacity oi based on the input
audio-visual features. Rather than moving the
Gaussian positions directly, this framework results
in 3D Gaussians with dynamic appearances. These
Gaussians can occasionally appear and vanish
depending on the current audio-visual features,
and additionally allow color changes to simulate
non-rigid appearance effects.

To this end, we augment every Gaussian primi-
tive with a learned latent feature basis F ∈ RB×f ,
as shown in Fig. 3 (Audiovisual Feature Basis),
where B is the number of blendshape expressions.
This feature basis is blended with an audio-
visual feature vector to enable dynamic expression
control. During training, the latent basis F is opti-
mized together with the other parameters of the

3D Gaussians. At each iteration, we blend the
respective audio-visual weights ei ∈ RB corre-
sponding to a particular expression at the current
frame index i, with the feature basis F into a 1D
feature vector fi ∈ Rf as:

fi = FTei + f0, (3)

where f0 is a bias term. Then, feature fi is fed into
a small MLP ϕ(·), to compute the Gaussian’s color
ci and opacity oi:

ci, oi = ϕ(fi, γ(µ)), (4)

where γ denotes the sinusoidal positional encod-
ing function, and µ denotes the Gaussian mean
position.

We use a compact MLP composed of two lin-
ear layers with LeakyReLU activation; the hidden
layer has 64 channels, and the last layer consists
of two branches for color and opacity prediction.
The model is optimized by comparing the ren-
dered image Ir with the ground truth image Igt,
using the following loss function:

L = λ1L1(Ir, Igt) + λsLs(Ir, Igt) + λpLp(Ir, Igt),
(5)

where, λ1, λs, and λp are weighting factors, and
Ls and Lp are SSIM and perceptual losses [70],
respectively.
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Fig. 3 An overview of our method for 3D animatable head reconstruction. HeadGaS++, is an extension of our
work HeadGaS [7], which uses features extracted from input audio speech to drive the facial expressions.

3.4 SWinGS++: Dynamic 3D Body
Reconstruction

Once the animatable head model is trained, our
focus shifts to 4D body reconstruction to com-
plete the avatar. To achieve the level of fidelity
required to create a convincing and realistic vir-
tual human, we extend our prior work SWinGS [8].
SWinGS enables high-quality rendering of general
dynamic scenes given multi-view, calibrated and
time-synchronized videos as input. SWinGS++
extends the method by shifting the focus to
dynamic humans with the introduction of a
spatial-temporal encoder to provide better human
motion estimation. An overview of our extended
method is shown in Fig. 4.

The body reconstruction pipeline comprises
three main components: 1) We divide an input
sequence into overlapping variable-length sliding
windows, based on the human’s motion. This
allows us to handle long sequences while pre-
serving render quality. 2) We train independent
4DGS models for each sliding window, where
per-window tunable MLPs [71] learn deforma-
tions from temporally-local canonical Gaussians
to each frame. This allows us to capture signifi-
cant geometric changes as well as the emergence
of new objects. 3) A final temporal fine-tuning
stage enforces temporal consistency throughout
the sequence. We discuss each of these steps in the
following sections.

3.4.1 Sliding Window Sampling

Representing the dynamic human with a sin-
gle 4DGS model is impractical, in terms of
computational load and performance degrada-
tion, especially with fast human motion and
long sequences. To address this, following [8], we
introduce a sliding-window strategy; partitioning
the sequence into smaller overlapping windows.
Each window is an independent 4DGS model,
allowing all Gaussian parameters–positions, rota-
tions, scaling, colors, and opacities–to change
between windows. Our adaptive sampling method
dynamically adjusts the window size based on
the human’s motion, balancing training efficiency
and performance. Given a sequence of length Nf

frames, we split it into a set of sliding win-
dows of lengths {Nw}, depending on the motion:
high-motion regions are sampled more frequently
(shorter windows), low-motion regions are sam-
pled less frequently (longer windows). The motion
is estimated using 2D optical flow from a pre-
trained RAFT model [72]. For each camera view
c ∈ C, we accumulate the optical flow magnitude
v̂i across frames:

v̂i =
1

C

C∑
c

Nf−1∑
i

||v(Ici , Ici+1)||22, (6)

and a new window is spawned at frame i when the
accumulated flow exceeds a predefined threshold
v̂i > vthresh.
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Fig. 4 An overview our dynamic 3DGS method for body reconstruction.. SWinGS++ is an extension of our
work SWinGS [8], using temporally-local dynamic MLPs on a sliding window basis. The method is extended using a spatial-
temporal encoder to help reconstruct larger or faster human movements.

3.4.2 Dynamic 3D Body Gaussians

To extend 3DGS for dynamic scenes, [8] intro-
duced temporally-local dynamic MLPs ϕ(·) for
each sliding window, where each MLP learns the
deformation mapping from a per-window canoni-
cal 3D Gaussian representation to the set of 3D
Gaussians for each frame i within the window. We
use a compact MLP which takes as input the nor-
malized frame time t ∈ [0, 1] and 3D Gaussian
positions µ (normalized by the scene’s mean and
standard deviation), and outputs displacements to
their positions ∆µ, rotations ∆r and scaling ∆s
at each time step:

∆µ(t),∆r(t),∆s(t) = ϕ(γ(µ), γ(t)). (7)

However, we found this model insufficient
to capture human motion when the inter-frame
displacement is large. Therefore, SWinGS++
extends the method by introducing per-window
spatial-temporal encoders, similar to [37, 73], as
shown in Fig. 4. The input 3D position µ and time
t are passed through the spatial-temporal encoder
H producing voxel features fv = H(µ, t), which
are then passed to the MLP:

∆µ(t),∆r(t),∆s(t) = ϕ(fv), (8)

resulting in better motion estimation and recon-
struction, as shown in Table 1 and our qualitative
results in Fig. 8.

The MLP uses the same architecture as [8], i.e.
a tunable MLP [71] consisting ofM sets of weights
with blending parameters {α ∈ RM×Ng}. These

sets of weights enable the MLP to learnM motion
modes, smoothly weighted by blending parameters
α for each input Gaussian. The output of a single
layer of the dynamic MLP can be expressed as:

y = ψ

(
M∑

m=1

(
αmwT

mx+ αmbm
))

, (9)

where w and b are the weights and bias, and ψ
is an activation function. Thus, the MLP from
Eq. (8) becomes ϕdyn, a function of spatial-
temporal features fv and blending parameters
α:

∆µ(t),∆r(t),∆s(t) = ϕdyn(fv,α). (10)

We optimize the model using the following loss
function:

L = λ1L1(Ir, Igt)+λsLs(Ir, Igt)+λmLm(Mr,Mgt),
(11)

where Lm is a mask loss which is simply the L1

loss on the rendered Mr and ground truth Mgt

human masks.

3.4.3 Temporal Consistency
Fine-tuning

After training each sliding window independently,
optimization discrepancies lead to temporal arti-
facts on the body, such as flickering, mainly appar-
ent in novel views. To mitigate this, we employ
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temporal fine-tuning to enforce inter-window con-
sistency. We fine-tune each sliding window model,
starting from the first and proceeding sequentially
through the sequence. We randomly sample novel
views Pnovel by interpolating the training camera
poses in SE(3):

Pnovel = expM

C∑
c

βc logM(Pc), (12)

where expM and logM are the matrix exponential
and logarithm respectively, and βc ∈ [0, 1] is a uni-
formly sampled weighting. We apply consistency
loss on novel view renders, which is simply the L1
loss on the overlapping frames of the current w
and previous w − 1 windows:

Lconsistency = |Iwr,t=0 − Iw−1
r,t=Nw−1|1. (13)

During fine-tuning, we freeze the previous win-
dow’s model and the MLPs, allowing only the
canonical Gaussians to optimize. We use an alter-
nating training strategy which optimizes for tem-
poral consistency on overlapping frames for 75%
of the time, while using the remaining 25% for
standard training.

3.5 Head-Body Model Integration

Once the head model is trained (Sec. 3.3), the next
step is to integrate the head with the body to pro-
duce a full-bodied avatar that can be rendered in
real-time. The integration process happens jointly
with the optimization of the body (Sec. 3.4) as this
enables smooth unification of the two models. Our
integration method includes the following steps:
1) 3D head-body pose alignment (see Sec. 3.6 on
cross-setup alignment), 2) Gaussian merging, 3)
Gaussian pruning and blending, and lastly 4) face
color optimization (if necessary). In this section,
we describe each of these processes in detail.

First, we align the head model with the body
model for each frame in the sequence. If the body
and the face are visible in the same capture (as in
Fig. 10), the head and body models can be simply
aligned using the tracked head poses, as the head
and body segmentations are extracted from the
same input images and both models use the same
camera poses. In this case, the head Gaussians are
transformed by the corresponding head pose Hi ∈
R4×4 at each frame i. In the case of head and body

data from different sources, i.e. different capture
setups (Fig. 7), the head must be rigidly aligned to
the body with additional transformation matrices.
This is explained in Sec. 3.6.

Secondly, to render the head and body mod-
els together, we merge their respective Gaussian
representations into a unified representation by
concatenating each of the Gaussian parameters
together, before being fed into the rasterizer.
This includes their positions, rotations, scales, col-
ors and opacities. Thus, the complete avatar can
be rendered efficiently with a single pass of the
Gaussian Splatting rasterizer.

Thirdly, simply merging the Gaussians of each
model together as stated results in significant arti-
facts. The reason is that Gaussians on the body
model can penetrate the face model. Addition-
ally, 2D head segmentation errors (or multi-view
mask inconsistencies) can lead to artifacts at the
face boundary, creating a noticeable transition
between face and body. To address these two
issues, we apply Gaussian blending and pruning
strategies. To prevent body Gaussians penetrat-
ing the face, we prune Gaussians from the body,
every n = 100 iterations, that lie within a spher-
ical region positioned at the centroid of the face.
We also prune Gaussians around the jaw to pre-
vent “double-chin” artifacts appearing, e.g. when
the face model opens the mouth but on the body it
is closed. To address face border issues, at the start
of training we inject randomly sampled Gaussians
positioned around the border (extracted from the
FLAME mesh) to help blend the edges.

The final integration stage is color or appear-
ance optimization, i.e. we optimize for the colors
of the face Gaussians to match the body. For cap-
tures with visible head and body, this step is not
necessary as the head and body models are trained
using the same input images and any differences
in color due to optimization discrepancies are neg-
ligible. In the case of data from different sources
with different lighting conditions, the appearance
of the head must be adjusted to match the body.
We do this by unfreezing the final layer of the
HeadGaS++ model, i.e. the parameters that con-
trol the color of the Gaussians, and allow these to
optimize concurrently with training of the body.
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3.6 Cross-setup Head Alignment

When training with the RenderMe-360 [74] and
DNA-Rendering [75] datasets for head and body
reconstruction respectively, we face the challenge
of having two separate captures of our avatar,
acquired at different times with distinct capture
setups (Fig. 7). Each setup has different world ori-
gins, camera poses and intrinsics, different motion
sequences with changing head poses, facial expres-
sions, and different lighting conditions, and other
varying factors (e.g. appearance and clothing)
that make integrating head and body challenging.

For the task of cross-setup head alignment,
the aim is to combine the 4DGS models so that
the head can be rendered in the reference sys-
tem of the body. In other words, transform the
HeadGaS++ model trained with capture setup 1’s
head and camera poses (RenderMe-360), so it can
be observed in capture 2’s reference system (DNA-
Rendering) and aligned to the per-frame head
poses of capture 2. Generally, this would not have
a closed-form solution, given that the captures are
entirely independent. However, we can exploit the
fact that the FLAME fittings from both sequences
puts both heads (from capture setups 1 and 2)
into a unified canonical reference system.

First, we can project a 3D point x from each
of the 3D models into an image in their individual
reference systems as:

pw1
= K1C

w2c
w1

C−1
ref,w1

Hi,w1xc (14)

pw2
= K2C

w2c
w2

C−1
ref,w2

Hi,w2xc, (15)

where p is a 2D image point and xc is the cor-
responding 3D point in canonical FLAME coor-
dinates. Hi is the head pose, K and Cw2c are
camera intrinsics and extrinsics, and Cref is the
head tracker’s reference world origin. Subscripts
w1 and w2 refer to the world coordinate systems
of capture setups 1 and 2 respectively.

However, what we need to represent in world
reference system w2 is not the canonical head xc,
but the observed head xi at frame i. The relation
between canonical pose and real observation is:

xc = H−1
refH

−1
i Crefxi. (16)

We write this equation generally as it applies
to both world references. Note, head poses are
applied relative to the first frame (Href = H0).

Fig. 5 Cross-setup head-body integration. The
audio-driven head model is trained using HeadGaS++ on
the RenderMe-360 dataset [74], while the body is trained
on the same subject from the DNA-Rendering dataset [75].
Left: the RenderMe-360 head is aligned to the DNA-
Rendering body using Eq. 20. To reduce artifacts, we prune
Gaussians from the body model as discussed in Sec. 3.5.
Right: we optimize for the face colors by un-freezing the
last layer of the HeadGaS++ MLP and optimizing jointly
with the body model.

We can also write the following relations between
the learned head geometry xh, canonical points xc

and observed points xi:

xh = C−1
refH

−1
i Crefxi, (17)

and
xc = H−1

refCrefxh. (18)

Exploiting the fact that canonical points xc are
are same in both worlds, and referring to Eq. (16)
and 18, we can write:

H−1
ref,w1

Cref,w1x
w1

h = H−1
ref,w2

H−1
i,w2

Cref,w2x
w2
i .
(19)

This can be rearranged, to obtain the final
transformation:

xw2
i = C−1

ref,w2
Hi,w2Href,w2H

−1
ref,w1

Cref,w1x
w1

h .
(20)

Using this transformation we can transform
the learned HeadGaS++ geometry xw1

h trained
with the head-centric captures from capture 1,
into the observed full-body captures xw2

i of cap-
ture 2. An example of this alignment is shown in
Fig. 5.
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3.7 Language Understanding and
Generation

To implement our interactive pipeline, we capi-
talize on the publicly available tools for natural
language processing, namely Audio Speech Recog-
nition (ASR), Large Language Models (LLM)
and Text-to-Speech (TTS) models. We will briefly
describe the specific models we used in our frame-
work.

3.7.1 Audio Speech Recognition (ASR)

ASR is the part of the pipeline responsible for
understanding input human audio speech and
feeding the LLM with the correct question with
low latency. We select Whisper [76], a state-of-
the-art model which demonstrates a strong ability
to generalize to many datasets and domains in a
zero-shot setting. In our pipeline, we incorporate
the Whisper Large V3 model to have support for
multiple languages and its distilled version, which
is much faster but with support only for English.

3.7.2 Large Language Model (LLM)

One of the most important parts of our pipeline is
the LLM module. As latency is a crucial factor for
the real-time nature of our application, we need to
have a fast and accurate model. To this end, we
deployed the quantized model of Qwen2 with 0.5B
parameters and Activation-aware Weight Quanti-
zation (AWQ) [77]. It is based on the Transformer
architecture with SwiGLU activation, attention
QKV bias, and group query attention.

3.7.3 Text-to-Speech (TTS)

TTS consists of the last part of our pipeline.
For our framework, we deployed the OpenVoice
V2 [78], which has native multilingual support
(English, Spanish, French, Chinese, Japanese, and
Korean).

4 Implementation Details

We implement our method in PyTorch, building
upon the 3DGS codebase and its differentiable
rasterizer. We initialize the body Gaussian cen-
ters using point clouds derived from SMPL-X
fittings, while the head points are initialized with
2500 vertices derived from the tracked FLAME

mesh [3, 79]. In scenarios where no mesh data is
available, the points are sampled randomly within
predefined near and far bounds.

The learning rates for the head MLP, Gaussian
positions µ, latent features F, scale S, and rota-
tion R are set to 1.6 × 10−4, 1.6 × 10−4, 0.0025,
0.005, and 0.001, respectively, while the body
MLP and blending parameters α learning rates
are initialized to 1 × 10−4. The body is trained
with the Adam optimizer, while head optimization
is performed using Stochastic Gradient Descent
(SGD), with exponential decay scheduling applied
to the Gaussian centers µ and the MLP parame-
ters. The latent feature F dimensionality is fixed
at 32 and initialized to zero. The expression
feature vector consists of 32-dimensional audio
features from SyncTalk [80] and 7-dimensional eye
parameters from the ARKit tracking [6], resulting
in 39 elements in total (i.e., B = 39).

The head model is trained on a GPU with 14
TFLOPS of FP32 performance for 50,000 itera-
tions, a process that takes roughly one hour to
complete. The perceptual loss Lp is applied after
10,000 iterations with a weight of 0.1, while the
weights for L1 and SSIM are set to 0.8 and 0.2,
respectively. For the body, each sliding window
model is trained for 30,000 iterations in parallel
across eight GPUs with 14 TFLOPS (FP32). The
first 1,000 iterations are designated as a warm-
up phase, where only the central frame of each
window is trained, with the MLP weights frozen
to allow stabilization of the canonical body repre-
sentation. The final fine-tuning step is performed
sequentially on a single GPU for 20,000 itera-
tions per window to ensure temporal consistency.
For both models, adaptive densification begins
at iteration 500 and concludes by the 15,000th
iteration.

4.1 Procedural Body Animation

While the dynamic body model produced by
SWinGS++ enables replay of the training video
sequence, it does not support novel pose gen-
eration. To create novel sequences, we use a
simple procedural animation technique. At infer-
ence time, given speech audio input, our method
generates a plausible body-pose sequence to com-
plement the audio-driven facial expressions. The
body animation should match the length of the
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speech. Otherwise, the head and body movements
can appear disjointed.

We do this by defining two states for the
avatar: (i) rest pose and (ii) action, each defined
by a set of preselected keyframes from the training
video. In rest pose, the avatar is in an idle state,
waiting to converse with the user when provided
input. The rest pose follows an infinite loop, con-
stantly replaying until a user input is detected.
The rest pose loop is created by defining start and
end keyframes and looping the rendered frames
back and forth. Random eye blinks are inserted
so that the avatar does not feel lifeless. To create
an action sequence, we define a set of keyframes
that signify key body movements from the training
video, e.g. hands gesticulating, carefully selected
so that the reversed the motion still feels natu-
ral. Our animation method randomly selects from
these keyframes to generate a sequence of move-
ments that match the length of the input audio,
finishing at the rest pose end keyframe so that the
movement smoothly transitions back into the idle
state.

4.2 Interactive Viewer

In this section, we detail our interactive viewer
implementation, serving as the central platform
for integrating our prebuilt avatar models with
interactive Text-to-Speech (TTS) and Large Lan-
guage Model (LLM) functionalities. The system
combines these components to deliver a smooth
and immersive conversational human avatar expe-
rience. We build upon the original viewer from
3DGS [23], which excels in rendering high-fidelity
static scenes but lacks dynamic and interactive
capabilities. To bridge this gap, we extend it to
support real-time interactivity and conversation
by adding modules for: (1) text or microphone
input, (2) Automatic Speech Recognition (ASR),
(3) LLM processing, (4) TTS audio generation,
(5) audio-to-SyncTalk expression parameter gen-
eration, and (6) our HeadGaS++ and dynamic
body models.

The key features of our interactive viewer
include:

4.2.1 Modular Integration with a
Remote Server

The viewer adopts a modular architecture allow-
ing for integration with remote server modules,

including the ASR, LLM, TTS, and SyncTalk
components. Each component functions indepen-
dently while maintaining synchronized commu-
nication between viewer and server. By keeping
the ASR, LLM, TTS, and SyncTalk modules on
a remote server, we minimize the computational
load on the local viewer. The local viewer focuses
solely on rendering and minimal communication,
including:

• Sending: user inputs (audio from a microphone
or text).

• Receiving: processed outputs (ASR text, LLM
text responses, TTS audio, SyncTalk parame-
ters).

• HeadGaS++ inference: using SyncTalk and
head pose inputs to predict Gaussian attributes
(Sec. 3.3).

• Rendering: background, body, and face Gaus-
sians.

This setup minimizes communication between the
local viewer and the remote server to essential
data exchanges, while computationally intensive
processes run concurrently on the remote server.
The final output from the server is the SyncTalk
expression parameters, which the local viewer
feeds into the embedded HeadGaS++ module
(using LibTorch). Frame-wise Gaussian parame-
ters are generated to produce audio-synchronized
facial expressions.

4.2.2 Real-Time Synchronization

The viewer synchronizes facial expressions, lip
movements, and body gestures with generated
speech in real time. Given a user input, the TTS
module converts a LLM-generated text response
into an audio signal, driving the facial animation.
Our procedural animation module (Sec. 4.1) gen-
erates natural idle motion to ensure the avatar dis-
plays natural body movement (e.g. eye-blinking)
while awaiting user input or server response.
To smoothly transition between idle and talk-
ing states, audio playback and facial animation
start simultaneously. The avatar’s Gaussians are
rendered at fixed 30 FPS to synchronize with
the audio, while background Gaussians utilize
the remaining processing capacity, enabling our
system to run at 105.27 FPS.
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5 Experimental Results

This section presents visual and quantitative
results supporting our method. We recommend
that readers inspect the supplementary video,
which shows high-quality renderings and several
user interaction scenarios with our avatar. The
model presented in this video was captured using
a synchronized multi-view system with 24 cam-
eras, recording a subject performing speech and
gestures simultaneously. To our knowledge, no
public dataset exists containing similar data (both
speech and body motion). As a result, we eval-
uate our body and face models separately using
dedicated datasets in Sec. 5.1 and 5.2. As these
datasets have been released by the same group, we
select sequences that depict the same subject in
both datasets, enabling us to build an interactive
avatar from different captures. This procedure is
described in Sec. 3.6.

5.1 Body Model Evaluation

We use the public DNA-Rendering dataset [75] to
evaluate our proposed body model. This dataset
contains full body human performances recorded
by 60 synchronized cameras at 15 FPS in a light
stage environment. Despite dense camera cover-
age, this is a challenging dataset due to complex
human motion, loose clothing with rich textures,
a large diversity of scanned individuals (ethnicity,
age, height, gender, etc.), and various object inter-
actions. An overview of the camera positions and
images is given in Fig. 7.

5.1.1 Novel View Synthesis Evaluation

Following prior work, we evaluate the quality of
our model through novel view synthesis (NVS).
DNA-Rendering [75] includes an NVS benchmark
but does not provide the exact data splits to
enable direct comparison to their results. How-
ever, we replicate it as closely as possible while
comparing to the most recent baselines.

We train one model for each sequence of 225
time steps using 48 cameras evenly distributed
around the subject. 12 cameras are held out
for evaluation. We use the six sequences shown

in the benchmark website1. To save computa-
tion, we preprocess training images by cropping
based on segmentation masks to avoid render-
ing background pixels. Evaluation is done using
PSNR, SSIM [81], and LPIPS [82] metrics. PSNR-
M refers to masked PSNR, i.e. PSNR computed
only on the ground truth human segmentation
mask. We compare our body model SWinGS++
(Sec. 3.4) to the following baselines:

• SWinGS [8]: our prior method without spatial-
temporal feature encoders.

• 4D Gaussian Splatting [37]: a 4D model that
proposed the spatial-temporal feature encoder
for 4DGS. In contrast with our method, it does
not use sliding windows.

• SpaceTime Gaussians [83]: a 4D model using
time-conditioned parametric functions to model
the evolution of Gaussians.

• HuGS [31]: An animatable GS model, i.e. defor-
mations are driven by the SMPL-X [10] skeleton
(Sec. 5.1.2).

• Better Together [84]: Another animatable
Human Body Model, that optimizes jointly
skeletal motion with gaussians rigged on a per-
sonalized human mesh, resulting in improved
quality compared to HuGS.

Quantitative comparison with all other meth-
ods is shown in Table 1 and qualitative compar-
isons are provided in Fig. 8. We observe that
fitting this dataset is difficult for most meth-
ods. Spacetime Gaussians [83] is limited to short
sequences as it is memory demanding; we had to
split the video into 5 segments of 45 frames and
train a dedicated model for each. 4DGaussians [37]
is compatible with longer sequences but presents
quite low rendering quality with poor detail recon-
struction. HuGS [31] supports training on long
sequences but, as it relies on a template-body
model, it is not able to capture objects and loose
clothing. It is generally more blurry overall, due to
noise in the input body pose parameters. Better
Together [84] presents improved rendering results
compared to HuGS thanks to optimized body
poses but still performs worse than 4D methods,
especially on loose clothing sequences. SWinGS [8]
and SWinGS++ perform better than these base-
lines thanks to the sliding windows approach.

1https://dna-rendering.github.io/
inner-benchmark-novel-view.html, accessed 23/10/2025.
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Table 1 Quantitative results of the body reconstruction for
novel view synthesis on the DNA Rendering dataset [75]. We
report PSNR, masked PSNR (PSNR-M), SSIM and LPIPS
metrics.

Method PSNR ↑ PSNR-M ↑ SSIM ↑ LPIPS ↓
SWinGS++ (ours) 30.1701 23.6950 0.9699 0.0807
SWinGS [8] 29.4488 22.9739 0.9647 0.0902
SpacetimeGauss.[83] 29.3039 22.8494 0.9621 0.0924
4DGS [37] 26.8197 20.2145 0.9441 0.1152
Better Together [84] 25.9881 19.5538 0.9437 0.1089
HuGS [31] 25.0400 18.9540 0.9404 0.1118

(a) SWinGS++ (b) HuGS (c) Novel pose
Fig. 6 Comparison between our dynamic body
model SWinGS++ and HuGS. SWinGS++ provides
notably better novel view synthesis results than HuGS on
observed motion. However, HuGS also enables novel pose
synthesis (c) which is not possible with a 4D reconstruc-
tion model like SWinGS++.

Finally, the spatial-temporal feature encoder of
SWinGS++ improves the rendering quality fur-
ther by 0.7dB PSNR and better reconstructs
faster movements, e.g. the subject’s leg in Fig. 8
row 1.

5.1.2 Comparison with Animatable
Body Models

As presented in Sec. 3.4, SWinGS++ learns a
time-dependent Gaussian Splatting model for the
dynamic human. However, another approach is to
use an animatable model where 3D Gaussians are
skinned to a human skeleton [32, 34, 35, 38, 39].

(a) DNA-Rendering

(b) RenderMe-360
Fig. 7 Datasets used for cross-setup avatar cre-
ation. We can use data of the same subject captured
from two different environments to train our Gaussian
avatar. We used DNA-Rendering for the body model and
RenderMe-360 for the head model. The alignment proce-
dure is discussed in section 3.6.

The advantage is the ability to render the sub-
ject in any target pose, rather than being limited
to replay of the training motions. We explored this
using HuGS [31] and Better Together [84] for the
body of our avatar. However, we observed that
animatable models present reduced render qual-
ity compared to SWinGS++, although they are
able to extrapolate to novel gestures with reason-
able quality, as shown in Fig. 6. While the render
quality is reduced compared to 4D methods, we
note that this benchmark contains human-object
interactions (e.g. holding a sword) which cannot
be represented by a human body model only.

Given the difference in render quality, we
decided to build our interactive avatar using
SWinGS++ to maximize photorealism and gener-
ate a convincing avatar. However, 4D models limit
us to the procedural body animation described in
Sec. 4.1 and thus the motion of the avatar can
sometimes look repetitive or not well adapted to
the speech. Animatable Gaussian-based avatars
would enable driving the body based on speech
input using 3D motion synthesis methods [85, 86].
We see this direction as a promising future work.
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SWinGS++  SWinGS SpaceTime HuGS 4DGS GT

Fig. 8 Qualitative comparison of novel view synthesis. Our method SWinGS++ displays notably sharper rendering
with better motion reconstruction.
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5.2 Head Model Evaluation

To evaluate our proposed animatable head model,
we follow [87], using four high-definition talking
portrait video clips from previous publicly released
video sets (three males, one female) for testing.
Each portrait video consists of 6,500 frames on
average that are divided into training and test sets
in a ratio of 10 : 1. The video clips are cropped
and resized to 512 × 512, apart from the Obama
video, which has a resolution of 450× 450.

We compare our model with two state-of-the-
art talking head NeRF-based methods, namely
ER-NeRF [88], RAD-NeRF [89], and two 3D
Gaussian Splatting-based methods, TalkingGaus-
sian [87] and GaussianTalker [90]. The evaluation
settings for the reconstruction quality and lip-
audio synchronization ability are as follows:

1. The self-reconstruction setting: Each video is
split into training and test sets. We trained
each model using the audio, expression param-
eters, and head-pose sequences from the train-
ing set. For testing, the model synthesizes
new instances of talking face using input
audio, expressions, and pose sequences from the
unseen test set. PSNR, SSIM [81], LPIPS [82],
LMD [91] are used in quantitative compari-
son. Lip synchronization is evaluated using the
confidence score (Sync-C) and error distance
(Sync-E) from SyncNet [92, 93].

Table 2 shows the quantitative comparison
with all other methods and qualitative com-
parisons are provided in Fig. 9. Our method
outperforms the state-of-the art methods in
rendering quality, motion quality, and effi-
ciency. It achieves the highest PSNR and SSIM,
indicating superior image fidelity and struc-
tural similarity, while maintaining a competi-
tive LPIPS score. In motion quality, it leads
with the highest Sync-C, reflecting better syn-
chronization. Efficiency-wise, it achieves the
highest FPS (250) with a reasonable training
time of 1 hour, making it highly suitable for
real-time applications. The quality of the recon-
structed faces can be seen in the qualitative
results in Fig. 9.

2. The cross-driven setting: In this case, each
pre-trained model is driven by audio tracks
from other videos. Specifically, we used the
same audio samples as in the previous work

SynObama [94] to evaluate the “Macron”
and “Lieu” portraits. Table 3 highlights the
effectiveness of our method. It achieves high
scores in Sync-C even in cross-lingual scenar-
ios. Despite the Macron model being trained in
French, it scores the lowest Sync-C by a con-
siderable margin, indicating superior alignment
of our lip movements. This emphasizes our
proposed method’s robustness and adaptability
in handling cross-lingual lip synchronization,
outperforming the other methods.

5.3 Head-Body Integration Ablation

In this section, we present an ablation study of
our head-body integration framework, including
quantitative and qualitative evaluation of each
component described in Section 3.5. Our aim is
to isolate each processing stage’s contribution to
the overall rendering fidelity of the fully-integrated
avatar. To do so, we evaluate the image renders
of each integrated avatar across all test views and
every 10 frames of the input sequence, compar-
ing them to the ground-truth images under the
following cumulative configurations:

1. Baseline (No Head): Body-only reconstruc-
tion without the head.

2. + Head Reconstruction: Directly attaching
the independently reconstructed head.

3. + Gaussian Pruning: Removing overlapping
or redundant facial splats to minimize visual
artifacts.

4. + Head-Pose Alignment: Applying the
head alignment transformation (Eq. 20) based
on a shared FLAME mesh to better align head
and body geometry.

5. + Face Color Optimization: Harmonizing
appearance in the overlapping face region via
local color attribute optimization.

We evaluate the integration process for two sep-
arate capture scenarios: same-setup and cross-
setup. Same-setup refers to when head and body
are sourced from the same capture setup, i.e.
the input images to the head and body recon-
structions are extracted from the same input
multi-view video sequences. For this we use the
DNA-Rendering dataset which contains full-body
captures. Cross-setup refers to when the head
and body images are sourced from distinct cap-
ture setups, e.g. DNA-Rendering for the body and
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Fig. 9 Qualitative comparison of lip synchronization. Our method HeadGaS++ displays better performance in
synthesizing synchronized talking heads compared to the baseline methods. Please zoom in for better visualization.
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Table 2 Quantitative results on head reconstruction quality and lip-synchronization for the self-reconstruction setting.
We compare to different methods and report rendering quality, motion quality, and efficiency. Each model is trained using
the audio, expression parameters, and head-pose sequences from the training set and tested on unseen input audio,
expressions, and poses.

Methods Rendering Quality Motion Quality Efficiency

PSNR ↑ SSIM ↑ LPIPS ↓ LMD ↓ Sync-C ↑ Training Time FPS
Ground Truth N/A 0 1.000 6.861 7.584 - -
RAD-NeRF [89] 26.794 0.901 0.083 2.907 4.988 3h 25
ER-NeRF [88] 27.350 0.904 0.063 2.836 5.172 1h 35
TalkingGaussian [87] 29.317 0.920 0.046 2.688 5.802 0.8h 110
GaussianTalker [90] 29.127 0.911 0.085 2.814 5.350 5h 130
Ours 30.398 0.935 0.051 2.793 5.928 1h 250

Table 3 Quantitative results on lip synchronization for the cross-driven setting. Following previous works, we extract
two audio clips from the SynObama demo [94] to drive each method and evaluate lip synchronization using the confidence
score (Sync-C) and error distance (Sync-E) from SyncNet [92, 93].

Methods Test Audio A Test Audio B

“Macron” “Lieu” “Macron” “Lieu”

Sync-E ↓ Sync-C ↑ Sync-E ↓ Sync-C ↑ Sync-E ↓ Sync-C ↑ Sync-E ↓ Sync-C ↑
Ground Truth 0 7.463 0 7.463 0 7.37 0 7.37
RAD-NeRF [89] 7.999 6.419 9.910 4.051 7.875 6.894 8.728 6.135
ER-NeRF [88] 8.618 6.110 11.105 2.828 7.826 7.271 11.241 3.168
TalkingGaussian [87] 8.597 6.038 10.389 3.242 8.008 6.803 10.429 3.736
GaussianTalker [90] 9.381 5.399 10.691 3.138 8.738 6.522 11.142 3.285
Ours 7.566 6.235 7.431 6.487 7.231 7.251 7.463 7.491

RenderMe-360 for the head. Each capture setup
has different number of cameras with different
viewpoints and fields-of-view, varying illumination
and backgrounds, and changing avatar appear-
ance. We explore the cross-setup scenario as it
enables us to train a high-fidelity animatable head
model on close-up images of the face, while captur-
ing the body separately. High-resolution capture
of both face and body with detectable facial
expressions and audio speech is challenging to
achieve with a single capture setup.

Evaluation Protocol and Selection Crite-
ria.We perform the ablation study using 5 avatars
with varying appearances: 3 for same-setup and
2 for cross-setup. We select avatars from the
DNA-Rendering dataset who exhibit a presenter-
style appearance, with visible facial expressions or
speech and limited body motion. For cross-setup,
we select avatars who are present in both the
DNA-Rendering and RenderMe-360 datasets. For
each setup, we follow the evaluation protocol of
DNA-Rendering by training the body model with
48 cameras, with 12 hold-out cameras for testing.

8 training cameras are used to train the HeadGaS
model. For cross-setup, we follow the same pro-
cess to train the body, but the HeadGaS model is
trained using 20 cameras from RenderMe-360.

Ablation Results and Discussion. Quan-
titative results for the same-setup and cross-setup
scenarios are shown in Tables 4 and 5, respec-
tively. Each additional component yields consis-
tent improvements in PSNR, SSIM, and LPIPS,
with the final configuration achieving a PSNR
of 33.64 dB for same-setup and 32.00 dB for
cross-setup. These quantitative results are com-
plemented by qualitative comparisons in Fig. 11
and 12, where the progressive reduction of visible
seams around the face, geometric head misalign-
ments, and face-color discrepancies clearly illus-
trates the effectiveness of each step.

The examples in Fig. 11 and 12 show particu-
larly challenging cases of cross-setup integration,
where the head and body are reconstructed from
two distinct datasets: RenderMe-360 and DNA-
Rendering, respectively. Although the same avatar
identity appears in both, the differences in camera
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Fig. 10 Qualitative results showing the interactive avatar’s different modes of variation. Top row: the avatar’s
facial animation is driven by novel expression parameters generated from input audio speech, while the body undergoes
corresponding procedural animation. Middle row: a static human pose is held while the face is animated with novel expres-
sions. Bottom row: the user has full free-viewpoint navigation of the fully animated 3D avatar in real time.

systems, lighting conditions, hair style, make-up,
and expressions introduce significant inconsis-
tency in the 3DGS outputs. Näıve fusion of these
assets can lead to discontinuities and degraded
visual quality.

To address this, as discussed in Section 3.6,
we exploit the shared canonical FLAME geome-
try to align both reconstructions. This alignment
is critical for initializing a consistent coordinate
frame, but due to dataset-specific variations in
appearance and lighting, further processing is
required. We thus perform Gaussian pruning in
the overlapping region to prevent redundancy and
eliminate interference between splats, followed by
color optimization to achieve a seamless transition
in shading and appearance between the head and
body.

Altogether, our ablation results demonstrate
the necessity of each integration step. Without
careful handling, merging head and body recon-
structions from different sources leads to percep-
tual and geometric inconsistencies. Our proposed
pipeline successfully overcomes these challenges,
enabling high-fidelity, real-time, and photorealis-
tic full-body avatars—even in mismatched capture

scenarios.
Head-Body Integration Limitations.

1. Multi-view tracking failures of head pose and
facial keypoints, in both same-setup and cross-
setup configurations, can result in alignment
errors between the head and body. Head track-
ing may fail if the avatar’s movements are too
fast, motion-blurred, or if the face becomes
occluded, e.g. by limbs, hair, or clothing. Such
tracking errors also degrade the quality of the
resulting 3DGS head reconstruction, leading to
blurrier textures and sometimes spiky or float-
ing Gaussian artifacts. Incorrect tracking can
further cause the head to appear disembodied
from the body.

2. Appearance differences between capture setups
in the cross-setup scenario, e.g. variations in
illumination or avatar appearance (makeup or
facial hair) can result in artifacts when the
head is integrated with the body. Our face-color
optimization step helps close the gap in appear-
ance, but it can only model so much by chang-
ing the colors of the Gaussians. Significant color
differences or geometry changes, e.g. caused
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by different hairstyles or clothing (e.g. head-
wear or glasses) that partially occludes the
face, cannot be modeled by our method. These
topological differences will result in blurry face
textures when the face color is optimized.

3. Expression differences between the head and
body can cause Gaussian intersection artifacts.
For example, if the jaw of the underlying body
model is open (in the DNA-Rendering body
sequence) while the mouth of the expression-
driven head model remains closed, their corre-
sponding Gaussian representations may inter-
sect, leading to a “double-chin” effect or visible
protrusions. Our Gaussian pruning step allevi-
ates this issue, though minor artifacts may still
appear, slightly reducing the perceived realism
of the avatar.

4. Expression transfer between the source
(RenderMe-360) and target (DNA-Rendering)
in the cross-setup scenario can lead to inac-
curately modeled facial expressions in the
fully-integrated avatar. This issue can be
mitigated by normalizing the expression
parameters between the source and target to
be of similar scale.

Table 4 Ablation study of same-setup head-body
integration. In this scenario, the head and body inputs
are extracted from the same video sequences for each
avatar from the DNA-Rendering dataset. We evaluate
each component of the integration method across 3 avatars
with varying appearance; comparing the renders of each
combined avatar with their corresponding ground-truth
images for 12 hold-out test views and all 225 frames.

PSNR ↑ SSIM ↑ LPIPS ↓

Baseline Body Reconstruction 28.67 0.9527 0.0953
+ Head Reconstruction 31.23 0.9531 0.0933
+ Gaussian Pruning 31.74 0.9542 0.0922
+ Head Pose Alignment 33.64 0.9586 0.0883
+ Color Optimization − − −

5.4 Computational Speed and
Complexity

As we aim to achieve a real-time interactive
conversational avatar, we evaluate our viewer’s
performance on two different systems: a Linux
and a Windows system with different hardware

Table 5 Ablation study of cross-setup head-body
integration. In this scenario, for each avatar the body is
extracted from the DNA-Rendering dataset while the head
is extracted from RenderMe-360 for the same identity. We
evaluate each component of the integration method across
2 avatars with varying appearance; comparing the renders
of each combined avatar with their corresponding ground-
truth images for 12 hold-out test views and all 225 frames.

PSNR ↑ SSIM ↑ LPIPS ↓

Baseline Body Reconstruction 30.32 0.9581 0.1173
+ Head Reconstruction 26.52 0.9515 0.1208
+ Gaussian Pruning 27.23 0.9529 0.1195
+ Head Pose Alignment 28.96 0.9583 0.1133
+ Color Optimization 32.00 0.9613 0.1115

configurations, to assess computational speed and
efficiency. On the Linux system running Ubuntu
equipped with an Intel Core i9-9900X CPU, a
GPU with 10.7 TFLOPS (FP32) and 64 GB
of RAM, we achieve an average frame rate of
70.60 FPS when rendering the head, body, and
background (BG) together—equivalent to 14.16
ms per frame. On the Windows system running
Windows 11, equipped with an Intel Core i9-
13900HX CPU, GPU with 33 TFLOPS (FP32)
and 32 GB of RAM, we achieved an average
frame rate of 105.27 FPS under the same con-
ditions—equivalent to 9.50 ms per frame. These
results confirm that our system operates well
above the typical threshold for real-time perfor-
mance (30 FPS), ensuring smooth and responsive
interactions. Detailed performance metrics are
presented in Table 6.

Table 6 Performance metrics of our interactive viewer
on two system configurations. A ✓ indicates inclusion of
a component; absence of a mark indicates exclusion.

BG Body Head FPS (ms)
(HeadGaS++) Linux Windows

✓ 125.68 (7.96) 169.92 (5.89)
✓ ✓ 114.86 (8.70) 152.23 (6.57)
✓ ✓ 74.60 (13.40) 112.53 (8.89)
✓ ✓ ✓ 70.60 (14.16) 105.27 (9.50)
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Fig. 11 Ablation study of same-setup head-body integration. Qualitative results for each integration component
for the combined avatar compared to the ground truth.

6 Limitations

While our system achieves high-fidelity face
and body reconstruction and animation, with
real-time performance and conversational inter-
activity, several limitations remain that point to
promising directions for future work.

Pre-captured Body Motion. Although
our system supports full-body animation through
procedural motion graphs, the body movements
are currently generated from a dictionary of pre-
captured motion segments and do not incorporate
audio- or text-driven control. As a result, the
body motion is not semantically aligned with the
spoken content or conversational intent, which
can reduce perceived realism and responsive-
ness in interactive settings. While this approach
ensures real-time performance and gesture diver-
sity, it lacks the contextual expressivity required
for more natural avatar behavior. Future work
could integrate speech- or language-conditioned
gesture synthesis models (e.g., Chhatre et al. [95])
to generate plausible, emotionally grounded body
movements in response to audio or text prompts.

However, this is an ill-posed problem and achiev-
ing this without sacrificing real-time performance
remains an open challenge, particularly due to
the data and modeling requirements of current
gesture synthesis pipelines.

Fixed Avatar Illumination. Our method
assumes fixed lighting conditions during both
training and inference, and the resulting avatars
are not inherently relightable. As with most 3DGS
pipelines, lighting is baked into the per-splat color
attributes, limiting generalization to novel illu-
mination environments. That said, because our
training data is captured under calibrated, rela-
tively diffuse lighting conditions in a controlled
lightstage, the resulting splat colors approximate
diffuse albedo. This makes it possible to perform
approximate visual adaptation using global color
corrections (e.g., white balance or affine color
transforms) when compositing the avatar into
new scenes. More advanced relighting capabili-
ties could be incorporated via techniques from
recent work [58, 96], though these approaches
require significantly more complex training data
— such as OLAT multi-view face captures or
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Fig. 12 Ablation study of cross-setup head-body integration. Qualitative results for each integration component
for the combined avatar compared to the ground truth, where the head model is extracted from the RenderMe-360 dataset
and the body is from DNA-Rendering.

neural reflectance models — which our current
datasets (DNA-Rendering and RenderMe-360) do
not provide. Alternatively, appearance embedding
techniques such as BilaRF [97] or WildGaus-
sians [98] may offer a practical compromise by
modeling lighting variation implicitly across
views.

Fixed Identity Avatars. Our current inte-
gration pipeline assumes that the head and body
come from the same subject, an assumption that
limits flexibility in applications such as virtual
telepresence or avatar composition. Enabling
cross-identity integration (e.g., combining a user’s
face with a generic animated body) would require

robust normalization and alignment strategies
that reconcile differing identity traits, including
facial structure, hairstyle, and body proportions.

Controlled Capture Setup. Our system
is designed for high-quality, studio-captured
input data, typically acquired under controlled
conditions with uniform lighting, synchronized
cameras, and minimal occlusion. As such, per-
formance may degrade in more challenging
real-world scenarios — for instance, in-the-wild
video with limited viewpoint coverage, rapid
subject motion, or occlusions from props or loose
clothing. Adapting our pipeline to handle such
unconstrained inputs, including mobile capture or
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casual home recording, would require enhanced
robustness in geometry estimation, texture recon-
struction, and temporal consistency modeling.

In summary, while our system offers a novel,
photorealistic, and interactive avatar framework,
future work could focus on integrating audio-
conditioned body motion generation, improving
robustness to diverse lighting and capture con-
ditions, and enabling identity-flexible avatar
composition to broaden applicability and realism
in everyday use.

7 Conclusion

We have presented Interactive Conversational 3D
Virtual Human (ICo3D), a comprehensive sys-
tem for creating interactive, photorealistic 3D
virtual human avatars. Our system seamlessly
integrates dynamic full-body 3D reconstruction,
dynamic facial expressions, and audio-driven con-
versational capabilities. We address limitations
in the state-of-the-art by unifying novel methods
for audio-driven facial animation, LLM-powered
conversational interaction, and dynamic human
rendering. Additionally, our method enables real-
time rendering of avatars with free-viewpoint
camera navigation, delivering an immersive and
interactive user experience.

Our experimental results demonstrate the
effectiveness of ICo3D in producing lifelike avatars
with high-quality 3D reconstructions surpass-
ing state-of-the-art methods. Our extended body
reconstruction method SWinGS++ improves
upon its predecessor with better motion esti-
mation and sharper reconstructions, even with
significant human motion. Similarly, our extended
audio-driven 3D head model HeadGaS++ out-
performs state-of-the-art methods in terms of
rendering quality and lip synchronization in both
self-driven and cross-driven settings. Qualitative
results show our avatars are capable of engaging
in natural, LLM-driven conversations, with pre-
cise synchronization between audio and realistic
facial expressions.

Supplementary information. Please refer to
our supplementary video for more visualizations
and results.
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